Закон сохранения энергии в механике имеет вид. Закон сохранения энергии

Механическую, ядерную, электромагнитную, и т.д. Однако пока будем рассматривать только одну ее форму - механическую. Тем более что с точки зрения истории развития физики, она начиналась с изучения сил и работы. На одном из этапов становления науки был открыт закон сохранения энергии.

При рассмотрении механических явлений используют понятия кинетической и Экспериментально установлено, что энергия не исчезает бесследно, из одного вида она превращается в другой. Можно считать, что сказанное в самом общем виде формулирует закон сохранения

Сначала надо отметить, что в сумме потенциальная и тела называются механической энергией. Далее необходимо иметь в виду, что закон сохранения справедлив при отсутствии внешнего воздействия и дополнительных потерь, вызванных, например, преодолением сил сопротивления. Если какое-то из этих требований нарушено, то при изменении энергии будут происходить ее потери.

Самый простой эксперимент, подтверждающий указанные граничные условия, каждый может провести самостоятельно. Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу.

Что мы видим в этом опыте? Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется.

Однако в подобном примере есть нарушения двух ранее установленных условий. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления. Кроме того, мяч сталкивается с полом и отскакивает, т.е. он испытывает внешнее воздействие, а это второе нарушение граничных условий, которые необходимы, чтобы закон сохранения энергии был справедлив.

В конце концов скачки мяча прекратятся, и он остановится. Вся имеющаяся первоначальная энергия окажется потраченной на преодоление сопротивления воздуха и внешнего воздействия. Однако кроме превращения энергии окажется выполненной работа по преодолению сил трения. Это приведёт к нагреванию самого тела. Зачастую величина нагрева не очень значительная, и ее можно определить только при измерении точными приборами, но подобное изменение температуры существует.

Кроме механической, есть и другие виды энергии - световая, электромагнитная, химическая. Однако для всех разновидностей энергии справедливо, что из одного вида возможен переход в другой, и что при таких превращениях суммарная энергия всех видов остаётся постоянной. Это является подтверждением всеобщего характера сохранения энергии.

Здесь надо учесть, что переход энергии может означать и её бесполезную потерю. При механических явлениях свидетельством этого будет нагрев окружающей среды или взаимодействующих поверхностей.

Таким образом, простейшее механическое явление позволило нам определить закон сохранения энергии и граничные условия, обеспечивающие его выполнение. Была установлено, что осуществляется из имеющегося вида в любой другой, и выявлен всеобщий характер упомянутого закона.

Закон сохранения энергии, для любой замкнутой системы полная механическая энергия остается постоянной при любых взаимодействиях тел внутри системы. То есть энергия не возникает из ниоткуда и в никуда не исчезает. Она лишь переходит из одной формы в другую. Это справедливо для замкнутых систем, в которых энергия не поступает из вне, и не уходит из системы наружу.

Приближённым примером замкнутой системы может служить падение груза относительно большой массы, и малых размеров на землю с небольшой высоты. Допустим, что груз зафиксирован на некоторой высоте. При этом он обладает потенциальной энергией. Эта энергия зависит от его массы и высоты, на которой находится тело.

Формула 1 - Потенциальная энергия.


Кинетическая энергия груза при этом равна нулю, так как тело находится в состоянии покоя. То есть скорость тела равна нулю. При этом на систему не действуют никакие сторонние силы. В данном случае для нас важна только сила тяжести, действующая на груз.

Формула 2 - Кинетическая энергия.


Далее тело отпускают, и оно переходит в свободное падение. При этом его потенциальная энергия уменьшается. Так как уменьшается высота тела над землей. Также увеличивается кинетическая энергия. Вследствие того что тело начало двигаться и приобрело некоторую скорость. Груз движется к земле с ускорением свободного падения, а значит с прохождением некоторого расстояния, его кинетическая энергия увеличивается, вследствие увеличения скорости.

Рисунок 1 - Свободное падение тела.


Так как груз малыми размерами то сопротивление воздуха достаточно мало и энергия на его преодоление мала и ею можно пренебречь. Скорость движения тела не высока и на малом расстоянии не достигает момента, когда она уравновешивается трением о воздух и ускорение прекращается.

В момент столкновения с землей кинетическая энергия максимальна. Так как тело обладает максимальной для него скоростью. А потенциальная энергия равна нулю, так как тело достигло поверхности земли и высота равна нулю. То есть что происходит, максимальная потенциальная энергия в верхней точке, по мере движения переходит в кинетическую, которая в свою очередь достигает максимума в нижней точке. Но сумма всех энергий в системе за время движения остается постоянной. Насколько уменьшилась потенциальная энергия, настолько увеличилась кинетическая.

Формула 3 - Суммарная энергия системы.

Теперь если к грузу приделать парашют. Тем самым мы увеличим силу трения о воздух, и система перестает быть замкнутой. Как и раньше груз движется к земле, но его скорость остается постоянной. Так как сила тяжести уравновешивается силой трения о воздух поверхностью парашюта. Таким образом, потенциальная энергия уменьшается с уменьшением высоты. А кинетическая, на протяжении всего падения остается постоянной. Поскольку масса тела и его скорость неизменна.

Рисунок 2 - Замедленное падение тела.


Излишки потенциальной энергии, возникающие при уменьшении высоты тела, расходуются на преодоление сил трения о воздух. Тем самым снижая его конечную скорость снижения. То есть потенциальная энергия переходит в тепловую, нагревающую поверхность парашюта и окружающий воздух.

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины:

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.